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10.1 Anthropic History: Actions vs. Reaction

Since early times, man has been settling near to rivers and other freshwater
sources, which are used as water supplies for their own maintenance, as well
as for animal husbandry and agronomic purposes. Therefore, human den-
sification has occurred worldwide on riverbanks, as well as in coastal regions
where water flows, promoting relevant areas for many activities. Among
them, there are the establishment of seaport, food stock/transportation, and
others, that are responsible for city infrastructures. Actually, more than 50%
of the human population lives less than 60 km from the sea,' in a narrow
territorial strip. With the advent of the industrial revolution, this un-
controlled occupation caused harmful effects to the environment, firstly
through the diversification of pollutants generated and second by the
damages promoted by contact or inadequate disposal of slag resulting from
anthropic activities. Among these, there are seaport facilities and the traffic
of ships, generally associated with large industrial complexes, where prod-
ucts are stocked, many of them with strong pollutant power (e.g., gas,
liquids, oils, greases and other petrochemicals).

Several regions of the world stand out in terms of industrial development,
often with no regard to the neutralization of the pollutants generated, which
inevitably reach the adjacent environments through the action of the water
cycle, and are finally dispersed, reaching the oceans. Among developing
countries, the greatest concern as to the target levels of pollution is in China,
where the diversity of the products generated and the myriad of xenobiotics
from different origins have a large contamination potential.>>

Industrialization led many European countries through alarming advents
of pollution. An example occurred in the 1950s in London (UK), where re-
markable industrial atmospheric pollution (smog = smoke + fog) provoked
the death of at least 4000 people and a range of diseases.* More recently, a
serious atmospheric accident occurred in the 1960s in Cubatdo municipality
(Southeast Brazil); a large industrial complex caused contamination of air,
rivers, estuary and forests, increasing the incidence of pulmonary diseases,
congenic malformations,” and high mortality of aquatic organisms, making
them unfit for human consumption.®

10.2 Coastal Environments: Biodiversity and
Conservation

Coastal environments are highly affected by pollutants, carried from ter-
restrial areas to rivers and estuarine systems, in densely occupied areas
where anthropic activities occur with no monitoring. Many accidents have
occurred and here we highlight some significant ones: oil spills, e.g.,
‘Deepwater Horizon’ drilling platform accident,” at a depth of 1500 m,
occurred in April in the at Gulf of Mexico, where approximately 780 000 m®
of crude oil was released to the sea over the course of three months; mine
slag contamination, e.g., the Funddo dam collapse by the mining company



214 Chapter 10

Samarco (a subsidiary of Vale & BHP)® in the central region of Brazil in
November 2015, leading to pollution of the Doce river and the death of
millions of fishes in the coastal ecosystems, including the marine life of the
Abrolhos archipelago; and chemical accidents, e.g., a leak of 400 thousand
liters of firefighting liquid foam generator, used to eradicate fire accidents,
occurred with six fuel tanks at Ultracargo® in April 2015, and this was dis-
persed to the estuarine area of Santos-Sio Vicente, Southeast Brazil. There-
fore, coastal areas are subjected to elevated environmental risk of anthropic
origin, despite the existence of security plans that unfortunately are in-
sufficient, inefficient and dysfunctional.

The release of these products promotes the death of organisms respon-
sible for primary productivity (microalgae in aquatic ecosystems, and
aquatic vegetation from wetlands e.g., mangroves), to other trophic levels,
such as filter feeders (e.g., oysters and clams) up to benthonic organisms
with different food habits, among them herbivores, omnivores, detritivores
(e.g:, turtles, fishes, shrimps and crabs), and carnivores (e.g., aquatic birds,
porpoises, raccoons).

10.3 Mangrove Ecosystem: Importance and Threats

Mangroves are unique coastal ecosystems, found in shallow areas in inter-
tidal zones present in estuarine systems, in an ecotone that involves ter-
restrial and aquatic environments, the last one being made up of marine and
freshwater areas.'”'! Mangroves are registered in tropical and subtropical
regions of the world, and total 137760 km?, mainly near the equatorial
zone."” In these areas, deposition of fine sediments occurs, mainly silt
(0.05-0.002 mm) and clay (<0.002 mm), but very fine sand (0.1-0.05 mm) can
also occur, resulting in banks of fluid mud."® The fine granulometric char-
acteristics of mangrove sediments make this environment susceptible to
contamination by oil residues, toxic metals, and organic/inorganic com-
pounds.'* Therefore, these areas act as efficient biogeochemical barriers,
holding back these xenobiotics (mainly toxic metals), blocking their free
circulation and making them unavailable to plants and animals of these
areas.'>'® This sedimentary matrix involves an association of organic matter
and nutrients, varying with flooding area and tides, and promoting different
scenarios of redox potential, availability and action of chemical elements
over the course of the day."® This specific natural oscillation of physical and
chemical parameters (e.g., salinity, pH and oxygen content) acts on the di-
versity and density of micro/macro organisms that live in this environment,
which show specific structures and physiological conditions to survive in
these areas. Owing to the high productivity of mangroves, this ecosystem has
an important role during nutrient cycling, affecting adjacent environ-
ments.'”>'" Therefore, mangrove areas attract animal species that use this
environment for food, protection, and reproduction purposes.'” The muddy
sediment of mangroves is flooded by tides daily, and the interstitial water of
the sediment is characterized by a significant change of the salinity” and low
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oxygen because of the high organic matter content.'"® These stressful en-
vironmental conditions allow the colonization of facultative halophyte plants
called mangue,'®'" adapted to live there, with suitable morphology for fixation
in the sediment (rhizophores), oxygen extraction by aerial roots (pneumato-
phores) and physiological strategies to control salt load.'® These characteristics
attenuate the impacts of flood tides and are fundamental for the retention of
high concentrations of organic and inorganic substances,'® many of which are
not essential to metabolic processes and are considered pollutants.

In this nutrition-rich environment, organic matter (particulate and dis-
solved) is available to microorganisms, where a diversity of zooplankton and
juveniles of many invertebrates, such as molluscs, crustaceans and fishes,
can survive.'"'” The mangrove is composed of resident species (e.g. decapod
crustaceans), semi-residents (occupying these areas in specific moments of
life, e.g. during reproduction), regular visitors and opportunistic visitors."’
In Brazil, a few species live permanently in mangroves, among them decapod
crustaceans (Figure 10.1), found in diverse strata or in adjacent environ-
ments, as follows: (A) uca crab Ucides cordatus (Linnaeus, 1763), a herbiv-
orous crab that uses mangrove litter and actively digs mangrove sediments;
(B) grapsid crab Goniopsis cruentata (Latreille, 1803), which lives among
roots and holes in trees, and is omnivorous; (C) arboreal crab Aratus pisonii
(H. Milne Edwards, 1837), which lives in canopies and branches of trees and
is uniquely herbivorous, feeding on green leaves; (D) species of the genus
Uca (Leach, 1814), here represented by Uca maracoani (Latreille, 1802), which
are deposit feeders, using organic matter in the sediment for their survival,
and digging galleries in the sediment; (E) guaiamu crab Cardisoma guanhumi
(Latreille, 1828), generally occurring in sandy estuaries, associated with
freshwater in transition with tropical forests, where the topography is more
elevated and flooding tides are not frequent; and (F) ghost crab Ocypode
quadrata (Fabricius, 1787), with omnivorous habit and that use macro-
invertebrates present in the intertidal zone of sandy beaches, dig their gal-
leries in supralittoral areas, and are generally associated with sandy dunes.
These representatives of the infraorder Brachyura (brachyuran crabs) are
important to many biological processes, where scavengers promote bio-
turbation of the sediment, increasing aeration, stratum mixture, and the
content of organic matter and other nutrients content. Thus, they have been
called ecosystem engineers.'**°

Despite the economic and ecological importance of mangroves, they are
subjected to high and systematic anthropic pressure, with significant de-
cline (approximately 1-2% per year), leading to the disappearance of this
ecosystem in about 100 years.>' Environmental contamination, as a result
from disorderly and rapid urbanization and industrialization, has led to
concerns from researchers and environmental analysts because the residues
produced (e.g., by estuarine dredging, dumping of liquid effluents, indis-
criminate use of fertilizers and pesticides in cultivable fields), are cumu-
lative, toxic and persistent, as seen with toxic metals.>* Information about
this situation reveals the urgent necessity for more basal studies and
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Figure 10.1 Brachyuran species (crabs) and their occurrence on the Brazilian coast,
with potential use for evaluation and monitoring of mangroves [A:
Ucides cordatus (Linnaeus, 1763), photo by Delson Gomes; B: Goniopsis
cruentata (Latreille, 1803), photo by Marcelo Pinheiro; C: Aratus pisonii
(H. Milne-Edwards, 1837), photo by Marcelo Pinheiro; D: genus Uca,
represented by Uca maracoani (Leach, 1814), photo by Luis Ernesto
Bezerra), restingas [E: Cardisoma guanhumi (Latreille, 1828), photo by
Carlos Cantareli], and sandy beaches [F: Ocypode quadrata (Fabricius,
1787), photo by Alexandre Almeida]. Graphic design by Gustavo Pinheiro.

monitoring programs to increase knowledge about mangrove contamination
levels, and an integration with coastal and fishery management.*® In this
sense, application of models involving many areas, among them, morph-
ology, physiology, geological processes, as well as those resulting from
climatic changes of oceans water levels is highly desirable.**

10.4 Contaminants: Main Types, Origins and Effects
on Biota

The liberation and dispersion of chemical compounds in aquatic ecosystems
can occur through incorrect discharge. This can include disposal of
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untreated domestic sewage, industrial effluents, indiscriminate (or un-
necessary) use of pesticides, and others that result from accidents with
petroleum (or their organic derivatives), and atmospheric pollution from
fossil fuel burning.”® These compounds can lead to metabolic alterations,
and strongly compromise vital physiological processes of the biota, with
effects in respiration, reproduction and growth.®

In Brazil, the southeast coastal region of Sdo Paulo state, comprises nine
municipalities forming the Metropolitan Region of Baixada Santista (MRBS),
and the most central portion (Sdo Vicente, Cubatdo and Santos) hosts one of
the most industrialized regions of the Brazilian coast and the largest seaport
of Latin America, with a human density of approximately 450 million people
(see review in ref. 27). According to these authors, eight toxic metals, four
organochlorine pesticides, 12 PAHs and one PCB contaminated this central
coast of Sdo Paulo state. These numbers are much higher than the southern
coast, where the diversity of contaminants is 50% lower, with reduced
presence of toxic metals (37.5%), similar amounts of pesticides and the
absence of the other two pollutants. As a result of the higher human density
on the central coast, resulting from the historic use of this area since the
discovery of Brazil, pollutant amounts are higher than those cited in
guidelines used by environmental agencies.”® Among the identified sub-
stances present in water, sediment and local biota, there are dangerous toxic
metals (e.g., As, Cd, Pb, Cu, Cr, Hg, Ni, Zn, and others), PCBs widely used in
plastic products and the paint and fluid industries, as well as PAHs,
synthesized during incomplete burning of organic matter.>”>*>°

Release of xenobiotic compounds in water can increase waterborne
diseases, chemical contamination and accumulation/magnification effects
of toxic metals.>" As a consequence, decreased fishery stocks and reduced
resource quality are obvious consequences of pollutant effects. Many of
these substances present a toxicity period, persistence, mobility and bioac-
cumulation, leading to risks to higher trophic levels, especially to human
health. As an example, accumulation of organochlorine, found in agri-
cultural pesticides such as DDT and others organochlorine insecticides,
favours bioaccumulation and biomagnification along the trophic chain.*”

Bioaccumulation processes due to absorption and discharge of chemical
substances through water and food ingestion have been a particular concern
in estuarine regions, where high contamination indexes are frequently
found (e.g., Baixada Santista in Brazil). The bioaccumulation leads to bio-
magnification, a process where a substance is absorbed by aquatic organ-
isms through the trophic chain, accumulating at higher trophic levels.*?
Bioaccumulation of xenobiotics depends on factors such as biological pro-
cesses (feeding, physical/chemical composition and lifestyle) and environ-
mental chemical compounds (pH, salinity, sediment composition, etc.).”*
Sediments reflect this variability owing to changes occurring in abiotic fac-
tors and promoting water quality alteration due to pollutant dispersion to
the water column, followed by the distribution of potential toxic trace
elements to biota and human populations.?® It is important to highlight
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those studies using biomarkers and environmental impacts should take into
account differences promoted by a range of abiotic parameters as a function
of climatic seasons. Among them, local variations of abiotic parameters (e.g.,
pH, salinity, and others) can cause distinct contamination levels in biota,
influencing the health of these organisms.

Invertebrates play an important role influencing many biological func-
tions in wetland ecosystems,* especially as food for birds and mammals.
Generally, the diversity and richness of species decreases with local stressors
(e.g., wetland hydrology, vegetation complexity, and water quality). Con-
sidering aquatic biota, a more intensive effect occurs in freshwater as a
function of the strong effect of pollutants from terrestrial and reclaimed
lands generated by agronomical contamination sources (e.g., organochlorine
and organophosphate pesticides, petroleum products and other xenobio-
tics), which accumulate in water bodies, lagoons, rivers, estuaries and the
ocean. It is clear that a higher concentration of contaminants in smaller
water bodies causes a stronger impact compared to in the marine environ-
ment. In this sense, an evaluation of the conservation status of 255 species of
Brazilian decapod crustaceans, conducted from 2010 to 2014 by the Chico
Mendes Institute for Biodiversity Conservation (ICMBio), from the Brazilian
Environmental Ministry (MMA), revealed that of 11% of threatened species
(N=28), 93% originated from freshwater, 4% from estuaries, and only 3%
from marine origin.>®

As previously mentioned, abiotic and biotic factors contribute to changes
in the concentrations of some pollutants, and their complexation to other
toxic molecules. An example is the presence of environmental mercury and
its transformation to methylmercury, a known neurotoxin that is produced
by anaerobic bacteria, with significant health risk to humans.’”*® This is of
relevance because most bioassays are specific to only one type of con-
taminant and, because of the chemical complexation that occurs with a set
of contaminants, the results obtained with biomarkers are not clear enough
to explain the contamination registered in a particular area.

The dynamics of bioaccumulation differ among contaminants, with a
response variation according to the organisms and organs of the same
individual.®® Little is known about the physiological and biochemical
modifications that affect organisms*’ or the changes in animals’ homeo-
stasis in chronically polluted areas. Some populations acquire tolerance
mechanisms under moderate pollutant levels, developing mechanisms of
excretion and other processes to deal with chemical compounds.*' These
mechanisms grant the animals in affected areas the ability to minimize and/
or repair the effects of environmental pollution, especially through a de-
toxification ability, compartmentalization of metals in certain organs, higher
excretion rates and even escape behavior.*’

Crabs, in particular, are able to store toxic metals in intracellular organ-
elles when these metals are above physiologically tolerable limits through
detoxification processes that render the metals inactive.*” High concen-
trations of metals can induce the cellular production of intracellular
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proteins, such as metallothioneins.** Toxic metals may also be captured by
lysosomes,”” or even compartmentalized into granules in detoxification or-
gans, such as the hepatopancreas.** Gills, on the other hand, as the first
organ affected by pollutants, represent a selective organ that is in contact
with both the internal and external environments, acting as a temporary
store for accumulated metals.*’

The damage involves a cascade of events promoted by stressors’® where
bioindicator responses act at several levels of biological organization to show
sublethal stress effects, serving as early warning signals in a causal rela-
tionship between stressors and effects, later manifested at higher levels of
biological organization. Therefore, stress responses measured at a bio-
chemical or physiological level can represent possible (and irreparable) fu-
ture damage to the population and community levels (Figure 10.2).
Therefore, biomarkers reflecting the health status at lower organizational
levels show an immediate response to stress and have a high toxicological
relevance, while biomarkers that reflect health conditions at higher organ-
izational levels respond slowly to stress and have decreased toxicological
relevance, but are more relevant ecologically.

10.5 Environmental Monitoring Based on
Biomarkers

Faced with a growing panorama of industrial and reckless occupation of
important ecosystems on our planet, there is an acceleration and intensifi-
cation of environmental degradation, with risks and consequences requiring
continued vigilance. Biota exposed to pollutants react to the exposure, and
the response produced can be identified and measured using biomarkers.>*
The use of these biological parameters reflects the behaviour and the
interactions between toxic agents and the biological systems, and can be
used as powerful tools for environmental monitoring. Their responses can
be used as a signal of toxic effects to the organism, involving perturbations
of biochemical and molecular nature inside the cells, later leading to effects
at higher levels of organization.*®

Biomarkers can be used in a variety of studies and types of chemical ex-
position. The general idea of their application is the possibility of precocious
detection of environmental perturbations that can contribute to the decline
of populations or whole communities, through sublethal effects, not those
responsible for an immediate animal death, but rather for alterations of
biological processes, as in endocrine and reproductive systems, for ex-
ample.’ In general biomarkers can be classified into three types:

(1) Exposure: covering the detection and measurement of an exogenous
substance or its metabolite or the product of an interaction between a
xenobiotic agent and some target molecule or cell that is measured in
a compartment within an organism.
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Figure 10.2 Levels of biological responses to pollutant stress in aquatic organisms,
representing the continuum of these responses along time gradients
and according to toxicological and ecological relevance.*®
Reproduced from Mar. Environ. Res., 28, S. M. Adams, K. L. Shepard,
M. S. Greeley Jr, B. D. Jimenez, M. G. Ryon, L. R. Shugart, J. F. McCarthy.
The use of bioindicators for assessing the effects of pollutant stress on
fish, 459-464, Copyright 1990, with permission from Elsevier. Redrawn
by Gustavo Pinheiro.

(2) Effect: including measurable biochemical, physiological or other al-
terations within tissues or body fluids of an organism that can be
recognized as being associated with an established or possible health
impairment or disease.

(3) Susceptibility: indicating the inherent or acquired ability of an or-
ganism to respond to the challenge of exposure to a specific xenobiotic
substance, including genetic factors and changes in receptors which
alter the susceptibility of an organism to that exposure.***°
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Since the perturbations occurred by exposure to contaminants are evi-
denced by changes in different biochemical processes (biotransformation
and excretion), cellular damages can occur, with special attention to proto-
cols involving DNA and organelles damages. The action of xenobiotics on
DNA is called ‘genotoxic disease syndrome’, where DNA damage can pro-
mote a strong effect at the individual and population levels, and genotoxic
effects in marine organisms exposed to organic compounds, such as aro-
matic hydrocarbons.*”~*°

Environmental monitoring in situ is widely used for some crustacean
species, such as Micronucleus Assay (MN%o), Comet Assay (CO) and the
Neutral Red Retention Time (NRRT), all indicating the cellular, genetic and
physiological integrity of the organism.

Micronuclei are structures formed from snippets of chromosomes that are
not incorporated into the nucleus of the daughter cells during cellular div-
ision, with subsequent encapsulation of these DNA snippets, promoting a
depletion of genic expression, endangering the production of proteins by
cells, and causing DNA damage.”® Thus, the generation of micronucleus
cells in high frequency when compared with basal values in the mollusc
Mytillus galloprovincialis (>4 MN%o),”" and persistence in the cytoplasm are
indicative of extended interaction with pollutants that are compromising
DNA integrity. The micronucleus assay has been used for a long time in
environmental monitoring to evaluate genotoxicity, as well as in toxicity tests
(acute and chronic), owing to use equipment requirements and low cost.
A single hemolymph drop (in the case of arthropods, such as crustaceans)
can produce thousands of valid cells for analysis without any special treat-
ment, except for fixation (Carnoy solution), coloration (Giemsa solution),
and micronucleated cell counting under a microscope, in relation to 1000
cells analysed. The test does not need a trained cytogeneticist, and hence the
protocol is considered an excellent tool to be applied in management pro-
jects of conservation units (CUS).

The Comet assay (single cell gel electrophoresis) is a technique that is able
to detect DNA damage in single cells,’* and has wide use in biomonitoring of
genotoxic agents.>® The advantages of this assay include its simplicity, quick
performance and high sensibility to many types of DNA damage,® con-
firmed by alteration of the damaged DNA during its migration in electro-
phoresis gel. Cells in eukaryote organisms have DNA of a few centimetres in
length, which needs to be strongly condensed inside the cell nuclei. Dam-
aged DNA is less condensed and, occasionally, structural breaks appear,””
with differential migration in the gel slide as a function of the size of the
snippets. Cells with non-fragmented DNA will have a preserved nucleus
during electrophoretic migration, maintaining its circular form, whereas
DNA with minor damage tends to migrate more quickly. When the DNA is
very damaged, many snippets with distinct sizes are formed with DNA mi-
gration at different velocities, generating a typical figure of a Comet tail.”®
This is a more sensitive method to detect genomic microlesions, allowing
individual identification of damage in most eukaryote cells,”” and is used as
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an ecological indicator for diagnosis and monitoring of coastal areas.>®*°

Success has been obtained with this assay during environmental monitoring
using vertebrates such as fishes, amphibians and mammals, as well as in-
vertebrates such as decapod crustaceans.®®°

The integrity of the lysosome membrane (neutral red retention time,
NRRT) is an in vitro test that has been used as a chemical stress biomarker
for the detection of xenobiotics’ harmful effects in organelles. This test is low
cost, efficient and easily replicated, based on the observation of the retention
time of the neutral red dye by the lysosome membrane, evaluating its se-
lective permeability.®® The first animals that NRRT was used in were in bi-
valves, where their hemocytes were applied for detection of alterations in the
lysosome membrane as a function of pollutant exposure, causing autophagy
and cellular degeneration processes.®® Evidence suggests that NRRT is a
biomarker for a large range of chemical stressors owing to its high sensitivity
to a set of contaminants and it is thus recommended in environmental
monitoring.®* Animals subject to constant stress in their environment show
damage in their cellular membrane through the action of free radicals, af-
fecting lysosome functions, such as recycling of other cellular organelles,
cellular constituents and particles from the external environment. Therefore,
a reduction of the lysosomal membrane stability is considered a general
indicator of the physiological condition of the individuals,*® affecting cel-
lular nutrition, immunological defence processes, and reproductive effi-
ciency of marine invertebrates,®® and can predict future damages to higher
levels of biological organization.®**”

Finally, it is important to highlight that some biomarkers are specific for a
set of pollutants. As an example, we can mention the protein metallothio-
nein (MTs), a biomarker specially synthetized by aquatic organisms (e.g.,
crustaceans) and used exclusively to bind some essential and non-essential
toxic metals (e.g., arsenic, cadmium, copper, mercury, selenium and zinc),*®
but not all metals. Other physiological (e.g., NRRT) and genetic biomarkers
(e.g., CO and MN%o.) are more representative for environmental monitoring
because they respond to a range of environmental pollutants. This indicates
the greater importance of some biomarkers when compared to others; some
are more relevant for monitoring environmental quality.

10.6 Sampling Design: Spatial Distribution,
Replicates, and Other Parameters

Studies conducted using biomarkers for environmental monitoring need a
careful sampling design to obtain reliable data to be used in coastal man-
agement within a study area. When the objective is to determine the re-
sponse of biota to specific pollutants, it is necessary to carry out an initial
screening test to avoid expenditure of financial resources because some
methods are very expensive to apply (e.g., concentration of toxic metals, PAH
levels, and others). A bibliographic consultation can provide details of
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common contaminants in a selected area to be studied, as well as knowledge
about industrial facilities present in the area, all of them providing infor-
mation that is important to reveal the set of xenobiotics that can influence
the local biota, specially sessile and/or resident species.

During the screening phase, other aspects to be considered are infor-
mation about the total size of the area to be studied, as well as the spatial
distribution of the species, which are important measures to obtain an op-
timum response. A comparison between estuarine systems also involves
concerns with the selection of subareas where the organisms occur, which
should have similar characteristics. Considering different ecosystems per-
taining to estuarine systems (e.g., mangrove forests, estuarine channel), se-
lected subareas should have similar abiotic (e.g., granulometry of the
sediment and flooding level) or biotic factors (e.g., arboreal composition
and/or dominance of mangrove forest). However, some factors are con-
sidered determinant in some cases owing to the higher variation in estuarine
systems (e.g., salinity and water pH), where different physiological processes
can affect the biota subjected to a specific pollutant (e.g., toxic metals), as
mentioned earlier. Therefore, a good sampling design leads to a good spatial
area representation, with a selection of similar subareas and, whenever
possible, separating haloclines with freshwater, brackish water and seawater
characteristics (Figure 10.3). According to the goal of the study (e.g., a
specific river, a region inside an estuary or an entire estuarine system) it
is necessary to establish a reduced number of subareas as a function
of size and objectives (B, C and D) or a wider number of subareas to be
sampled that represent an entire mangrove peninsula region (A) or estuarine
system (E).

Another important fact is that the subareas should represent true repli-
cates, with the capture of a minimum (and adequate) number of specimens
in each one. As an example, in studies conducted in Sdo Paulo State, we used
a minimum of five individuals per subarea to perform CO and MN%o assays,
generally with three subareas representing the whole studied area (N=15).
For the NRRT assay, a greater number of individuals is required (10 indi-
viduals per subarea; N=30 per area). However, the number of subareas
depends on the total size of the area to be studied. Following this procedure,
the reliability of the data obtained is increased, avoiding pseudoreplication,
which is not statistically independent.®®”°

10.7 Case Study of Mangrove Crab Ucides cordatus
and Other Semi-terrestrial Brachyuran Crabs

The mangrove crab Ucides cordatus (Linnaeus, 1763), called the ucd crab, is a
semi-terrestrial brachyuran species endemic in mangroves, with economic
relevance in coastal areas of the occidental Atlantic coast of the south
American continent, generating employment and income to riverside com-
munities.”* This species has a geographic distribution from Florida state
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Figure 10.3 Examples of some Brazilian estuarine systems with indication of sub-

area sampling in relation to size, more important in greater than in
smaller areas. A: Bragantina peninsula in Para state (near Braganca
city), very large and jagged, with expressive size and an integral man-
grove vegetation cover (N=12). B: Delta of the Parnaiba river (near
Parnaiba city), in Piaui state, with a medium size (N=5). C: Itanhaém
river (in Itanhaém city), in Sdo Paulo state, with reduced mangrove
fragments and reduced size, with two small tributary rivers (left and
right in the upper position), where the salinity wedge does not pene-
trate (N=3). D: Estuarine system of Una river at Juréia-Itatins Ecologic
Station (22.5 km from Peruibe city), with a pristine mangrove but with a
reduced size (N=3). E: Paranagua Estuarine system, with a large and
expressive size and a complex structure, formed by Paranagua Bay,
two small estuarine cities (Antonina at W, and Guaraquecaba at N) and
conservation units at Superagui National Park, requiring more sam-
pling (N=17). In the last example, the sampling design followed the
complexity of the environment with different anthropic pressures.
Photos from Google Earth and (A) from Data SIO, NOAA, U.S. Navy,
NGA, GEBCO, Image Landsat. Image copyright 2016 DigitalGlobe,
image copyright 2016 CNES/Astrium. Photo (B) from Data SIO, NOAA,
U.S. Navy, NGA, GEBCO, image copyright 2016 CNES/Astrium, image
copyright 2016 DigitalGlobe. Photo (C) image copyright 2016 Terra-
Metrics, image copyright 2016 DigitalGlobe. Photo (D) image copyright
2016 TerraMetrics, image copyright 2016 CNES/Astrium. Photo (E) from
Data SIO, NOAA, U.S. Navy, NGA, GEBCO, Image Landsat. Graphic
design by Gustavo Pinheiro.
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(USA) to the south of Brazil (Laguna city).”” The crab reaches a large size in
the adult phase,”! building burrows in the muddy sediment, mainly in the
intertidal mangrove zone, feeding on senescent leaves and propagules of the
arboreal species in this ecosystem,”” representing an ecological relevance in
recycling nutrients in this environment.”"”’* Due to their economical im-
portance, there is an intense capture above the growth capacity, which af-
fects population renewal, mainly in estuaries of the North Brazilian region.”
The capture is artisanal and occurs through the introduction of the arm of
crab catchers or using fishing tackle, some of them traditional (e.g., catch
hook) and others prohibited by Brazilian law (e.g., a trap called a re-
dinha).”"’® U. cordatus has a slow growth rate and it reaches its maximum
size by 10 years, with maturity age at 3 years old and commercial size at 4
years old for males (CW, carapace width >60 mm).”® Capture of females is
prohibited by law during the reproductive season (December to May), while
males cannot be captured during the andada phenomenon, when indi-
viduals of this species actively walk on mangrove sediment during repro-
duction.”’” Owing to these biological limitations, this species was included
in Annex II of the Normative Instruction n°5/2003,”® where it is categorized
as underexplored or threatened by overexploitation, with other species of
invertebrates and vertebrates used for fishing. Since 2011, the National Plan
of Management indicated the need for monitoring populations of three
species of the infraorder Brachyura with commercial importance (U. corda-
tus, Cardisoma guanhumi and Callinectes sapidus).”® The National Plan
Management reinforced the importance of maintaining the quality of the
estuarine environment, with the establishment of a Monitoring Program to
evaluate water and sediment quality, as well as the meat of these crust-
aceans, aiming to elaborate recovery plans.””

Populations of u¢d crab have been subjected to a range of anthropic en-
vironmental pressures. Therefore, this globally distributed ecosystem of
mangroves is continually affected by mining activities, effluent discharge,
deforestation, grounding, and improper occupation by aquaculture tanks,
among others.'" In this reality, all mangrove species have been influenced by
the synergic action of a range of pressures; among them are those caused
by pollutants, which are damaging at many biological levels.*® Metal con-
tamination and the bioaccumulation that occur in local fauna is based on
contact with different environmental matrices (water and sediment) and by
trophic pathway.** In this sense, U. cordatus is highlighted as a bioindicator
species due to many characteristics that are considered relevant in moni-
toring studies in situ, based on its capacity of dealing with metals and xe-
nobiotics by different pathways,>® such as:

(1) Trophic position: uca crab use as food the leaf litter composed of
senescent leaves and propagules of arboreal species in mangroves
(e.g., Rhizophora mangle, Laguncularia racemosa and Avicennia spp. in
Brazil).”> The transference of toxic metals and other pollutants from
the sediment to vegetation is a result of metabolic processes of each
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resident vegetal species, having a special role in water and sediment
depuration of high quantities of these pollutants.®’ The de-
composition process is very common in mangroves as an effect of
decomposers (fungi and bacteria) on senescent leaves and other or-
ganisms, and contributes to reduce dissolved oxygen in the sediment,
directly affecting the mobility of toxic metals. This organic matter
(particulate or dissolved) is transported by tides and accumulates toxic
metals, promoting contamination of the trophic chain in adjacent
coastal ecosystems.?” This accumulated biomass transfers metals to
the sediment, and also to higher trophic levels by nutrient recycling
promoted by mangrove crabs, increasing bioavailability, for example,
through filtering and through decomposing organisms. Studies about
the relationship between consumption of R. mangle leaves and as-
similation of metals by U. cordatus have been conducted in Brazilian
regions (north and southeast), proving that the ucd crab accumulate
metals in dangerous quantities for human consumption.***
Bioturbation of sediment: occurs when this species digs the muddy
sediment and incorporates organic matter and nutrients.”>** Due to
the mineralogical characteristics of this sediment, being anoxic with
fine granulometry, it is a typical reducer, acting as a true ‘sink’ of
heavy metals, petroleum, and other residues (organics and in-
organics).'*® However, in natural conditions, without the influence
of pollutant sources, these sediment characteristics ensure the re-
duction of potential deleterious effects caused by metals to biota,
impeding the remobilization and availability of these pollutants.™*
When inside burrows, U. cordatus maintains close contact with the
sediment, the water in the burrow, and contaminants present in in-
gested leaf litter;”>”* as a consequence this species is subjected to
three sources of contamination.

Biological limitations: due to slow growth rate and long life cycle,
expressive abundance, wide distribution and a low mobility during
their life.”® The minimum capture size of 60 mm carapace width by
law, and a minimum age of 3 years old, is a relevant standardization to
allow comparisons. Another important characteristic of decapod
crustaceans is the selection of intermoult exemplars to use in bio-
marker evaluations because in the pre- and post-moult stages there
are many metabolic demands, compromising the dynamics of ab-
sorption of pollutants and their defence system.’® The larval devel-
opment of U. cordatus comprises six instars of a zoea stage and one
stage of megalopa, that last one moulting to juvenile. During the first
juvenile stage the animals have reduced size, being attracted by con-
specific odours that are left by adults in the sediment, aiming to at-
tract individuals for recruitment in mangroves.***® Therefore,
polluted mangrove areas can affect the attractiveness of the ucd crab
and recruitment, leading to a reduction of population density.>”
Otherwise, this species can be used as a testimonial of mangrove
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health, which has been proved in ecotoxicological studies that indi-
cate the reliability of the contamination status of mangrove ecosystem
using the wucd crab as a bioindicator. Thus, in Brazil U. cordatus has
been used as an important bioindicator of environmental quality and
is strongly responsive to many pollutants (e.g., oils, polycyclic aromatic
hydrocarbons, toxic metals, and others).>*>®" Many studies have
identified the accumulation of some pollutants in greater or lesser
amounts in environmental matrices (e.g., sediment, water and food),
as well as accumulation in different tissues of the crab. In the case of
decapod crustaceans, such as U. cordatus, some contaminants such as
toxic metals can accumulate in the muscles (meat), gills, midgut gland
(hepatopancreas),’>®~" including the carapace (e.g., Pb), and even in
eggs carried in the female abdomen.’

On the Sao Paulo state coast, Brazil (see Figure 10.4), there are highly
contaminated mangrove areas, contrasting with pristine areas inside con-
servation areas managed by governmental institutions (e.g., Juréia-Itatins
Ecologic Station, supervised by the Florestal Foundation, an environmetal
agency). In general, the north coast of Sdo Paulo has a few mangrove frag-
ments, with greater abundance occurring on the central and south coasts of
this state. On the central coast of Sdo Paulo state the first Brazilian colony
(Sao Vicente) was established in 1532, and historically it is the most an-
thropic region, where the Santos port and Cubatdo industrial complex fa-
cilities were established, both with a high population, contrasting with the
south coast of this state, which have preserved mangroves with no human
influence (317600 and 2606 habitants km >, respectively).”® Studies using
two biomarkers (micronucleus and neutral red, see Figures 10.5 and 10.6,
respectively) were conducted in U. cordatus, indicating that mangroves of the
south coast of Sdo Paulo state have a better conservation status, considered
for categorization purposes®” as areas with a Probable No Impact (PNI),
where these biomarkers were <3 MN%o, and >120 minutes NRRT. Juréia
and Cananéia are examples of these mangrove areas, both localized in the
large Environmental Protected Area (EPA) of Cananéia, Iguape and Peruibe.
Considering the same categorization purpose, Cubatdo and Sdo Vicente,
both pertaining to the Estuarine Complex of Santos-Sdo Vicente, were con-
sidered as Probable High Impact (PHI) to the health of biota in that area,
based on the U. cordatus response, with values >5 MN%o and <60 minutes for
NRRT.>” Iguape was categorized as a Probable Low Impact (PLI) area, where
intermediate values were found for each biomarker. Another study captured
a specimen of U. cordatus with cheliped malformation in Sdo Vicente (in
the east of SAV1 subarea, see Figure 10.4), presenting a large quantity of
micronuclei (11.5 +2 MNY%o), explained by a set of industrial contaminants
from Cubatio and close to two public dumps (called Alemoa and Sambaia-
tuba).** The last influence was caused by a high concentration of leachate
produced by these dump sites that carries great concentrations of many
xenobiotics, mainly toxic metals.””
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Figure 10.5 Mean values of Neutral Red Retention Time (NRRT, in minutes) and
Micronucleus assay (MN%o, micronucleus cells in 1000 analysed) ob-
tained from the crab Ucides cordatus (Linnaeus, 1763) from six man-
grove areas sampled in the state of Sdo Paulo (Brazil), represented in a
logarithmic scale. Values were from three subareas, each one with
replicates for NRRT (n=10 per subarea and 30 per area) and MN%o
(n=5 per subarea and 15 per area). Data were obtained during the
conduction of the Project Uc4 (Phase III - FAPESP 2009/14725-1).>7'"°
Graphic design by Gustavo Pinheiro. Where: BET, Bertioga; CAN,
Cananéia; CUB, Cubatio; IGU, Iguape; JUR, Ecologic Station of Juréia-
Itatins; and SAV, Sao Vicente.

Ucides cordatus has been used for physiological studies related to toxic
metal transport using both gills and hepatopancreas cells as tissue tar-
gets.”® % In general, both Cu and Cd are transported through cell membrane
transporters that involve carriers associated with calcium transport.””*®
Posterior gills, which are responsible for ion transport, compared to the re-
spiratory role of anterior gills, transport and accumulate more toxic metals
compared to anterior gills.”® These should be target organs for study of pol-
lution effects, together with the hepatopancreas, which is known in these
crabs as a detoxifying organ, similar to the pancreas and liver in vertebrates.
Studies with discarded drugs containing iron (Fe) showed that this metal is
transported in U. cordatus hepatopancreatic cells, rendering these crabs as
good models to study the deleterious effects of discarded metal-rich wastes.”

Ucides cordatus responds well to biomarkers such as the neutral red re-
tention test and the micronucleus assay.’”’*>'°° Additional stress bio-
markers, such as metallothionein (MT),”® a protein found in the cell
cytoplasm of a range of animals, respond specifically to pollutants known as
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Figure 10.6 Mean values of lipid peroxidation (LPO, in Eq CHPxg ') using three
tissues (anterior gill, posterior gill and hepatopancreas) of the crab
Ucides cordatus (Linnaeus, 1763) in a polluted mangrove (Itanhaém
river) and a non-polluted one (Ecologic Station of Juréia-Itatins), meas-
ured from four individuals in triplicate.
Graphic design by Gustavo Pinheiro. Data obtained from M. G. Sa, F. P.
Zanotto. Characterization of copper transport in gill cells of a mangrove
crab Ucides cordatus, Aquat. Toxicol., 2013, 144-145, 275-283.%°

toxic metals, and for specific ones like Cu, Cd and Zn."°>'%> Another stress

biomarker of environmental pollution is lipid peroxidation (LPO), which
is also associated with the presence of metals'®*"'°> and oxidative processes
in general, caused by a myriad of other pollutants. Several studies with in-
vertebrates have shown that with rising pollution levels there is an increase
in the antioxidant systems, including lipid peroxidation.'® The crab
U. cordatus from polluted and unpolluted regions in Brazil was responsive to
LPO and there was a good correlation between LPO and pollution levels
(Figure 10.6), but not when metallothionein levels were evaluated, which
were not directly related to metal pollution for U. cordatus.’® These results
suggest that U. cordatus from chronically polluted regions do not increase
metallothionein production as a defence mechanism. Therefore, in crabs
from chronically polluted regions, it is possible that the main mechanism of
detoxification occurs through the formation of vacuoles and/or accumu-
lation of metals in cellular organelles, leaving the metals in a non-toxic
state.”® Such mechanism has already been seen in U. cordatus, with respect
to Zn accumulation in the hepatopancreas.”> Moreover, there are tissue-
related variations in MT levels and the relative influence of contamination
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Figure 10.7 Mean values of metallothioneins (MT, umol GSH pg of protein™ ') using
three tissues (anterior gill, posterior gill and hepatopancreas) of the
crab Ucides cordatus (Linnaeus, 1763) in a polluted mangrove (Itanhaém
river) and a non-polluted one (Ecologic Station of Juréia-Itatins), meas-
ured from four individuals in triplicates.

Graphic design by Gustavo Pinheiro. Data obtained from M. G. Sa, F. P.
Zanotto. Characterization of copper transport in gill cells of a mangrove
crab Ucides cordatus, Aquat. Toxicol., 2013, 144-145, 275-283.%°

factors limits the possibility of using MT levels as a reliable biomarker of
metal exposure (Figure 10.7).%°

Although crabs in general are able to metabolize and get rid of some of the
toxic metals loaded into cells through vacuole disposal,”> and possibly
through the shedding of the exoskeleton, they are, as stated above, good and
abundant models to indicate environmental contamination, mainly for
polluted mangrove areas where they live, in addition to the established filter-
feeding models, such as mussels.

Often a unique bioassay is not sufficient to reveal the effect of pollutants
in a studied area. As an example, U. cordatus were subjected to two bio-
markers assays (MN%o, micronucleus in hemocytes; and PM, pyrene
metabolites in urine) related to oil-derived PAHs in mangrove sediments; no
significant results were found for the MN%o assay but excellent results
were obtained for the PM assay, showing that U. cordatus is an excellent
bioindicator of mangrove quality related to the concentration of individual
or total PAHs.°™'%® In such cases, physiological analyses combined with
biomarkers evaluation (e.g., NRRT) can be very effective for quantification
of environmental contamination and to establish their contamination
category.”’
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Another aspect to be considered is the number of environmental matrices
(e.g., water, sediment, and contaminated food items) that each crab contacts
in their habitat. Some crabs are exclusively aquatic (e.g., Portunidae spe-
cies, frequently called swimming crabs), while other species inhabit ter-
restrial environments (Figure 10.1), and have more matrices to interact
with, as well as more pollutants sources to get contaminated by. These
semi-terrestrial species have similar characteristics when compared with
U. cordatus, and can provide good testimonials of environmental quality,
but sometimes they interact to greater or lesser degrees with environmental
matrices. Examples include the Occidental Atlantic mangroves of South
America, where the species A. pisonii (Figure 10.1C) interacts with water
and green leaves, while the red mangrove crab G. cruentata (Figure 10.1B)
explores and interacts with more mangrove matrices (e.g., water, sediment
and plants/animals used as food items).'”” However, studies involving
these species are still incipient, but reveal a promising application
using the micronucleus assay and enzymatic activity. Therefore, the use
of these species allows a comparison between polluted and pristine areas,
and can provide valuable information about the status of diverse en-
vironmental matrices, including different trophic levels.”®'%” In addition,
U. cordatus (Figure 10.1A) has an ecological similarity when compared
with C. guanhumi (Figure 10.1E), considering the large contact with many
environmental matrices in mangrove and restinga areas, respectively.
However, guaiamu crabs (Cardisoma guanhumi) build their galleries several
hundred meters offshore, particularly along estuaries and river banks,
composed of sand, associated with adjacent coastal forests (e.g., Atlantic
forest), 5 km from rivers.'*®'*® Owing to its occupation of coastal habitats,
C. guanhumi has been studied from a genotoxic point of view in the northeast
region of Brazil, where it is abundant and used as food by man, and the results
obtained revealed its importance as a sentinel species as well as the future use
in diagnosis and environmental monitoring.'*

The ghost crab Ocypode quadrata (Figure 10.1F) has also been considered
an important indicator of anthropic impacts, with population levels varying
according to different recreational uses in sandy beaches, mainly related to
density.'"'"'? Therefore, this species could be used as a model to represent
changes in these environments, with potential applications in studies
involving biomarkers, although its longevity is only around 3 years,"**
comprising 30% of the entire lifespan of U. cordatus.”®

Among all crab species studied, U. cordatus can be considered as a
good bioindicator of mangrove quality. Results obtained from genetic
and physiological biomarkers are comparable with local contamination,
especially NRRT results, which indicate a reliable response to pollutant ef-
fects based on a set of contaminants in mangrove areas. In conclusion, these
crab species are very useful bioindicators of environmental contamination
owing to their abundance and easy capture, and because some of them show
a relatively long life, an uncommon feature in macroinvertebrates.
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